Regional and global connectivity disturbances in focal epilepsy, related neurocognitive sequelae, and potential mechanistic underpinnings


Epilepsy is among the most common brain network disorders, and it is associated with substantial morbidity and increased mortality. Although focal epilepsy was traditionally considered a regional brain disorder, growing evidence has demonstrated widespread network alterations in this disorder that extend beyond the epileptogenic zone from which seizures originate. The goal of this review is to summarize recent investigations examining functional and structural connectivity alterations in focal epilepsy, including neuroimaging and electrophysiologic studies utilizing model-based or data-driven analytic methods. A significant subset of studies in both mesial temporal lobe epilepsy and focal neocortical epilepsy have demonstrated patterns of increased connectivity related to the epileptogenic zone, coupled with decreased connectivity in widespread distal networks. Connectivity patterns appear to be related to the duration and severity of disease, suggesting progressive connectivity reorganization in the setting of recurrent seizures over time. Global resting-state connectivity disturbances in focal epilepsy have been linked to neurocognitive problems, including memory and language disturbances. Although it is possible that increased connectivity in a particular brain region may enhance the propensity for seizure generation, it is not clear if global reductions in connectivity represent the damaging consequences of recurrent seizures, or an adaptive mechanism to prevent seizure propagation away from the epileptogenic zone. Overall, studying the connectome in focal epilepsy is a critical endeavor that may lead to improved strategies for epileptogenic-zone localization, surgical outcome prediction, and a better understanding of the neuropsychological implications of recurrent seizures.