Seizure-onset patterns in focal cortical dysplasia and neurodevelopmental tumors: Relationship with surgical prognosis and neuropathologic subtypes

Summary

Objectives

The study of intracerebral electroencephalography (EEG) seizure-onset patterns is crucial to accurately define the epileptogenic zone and guide successful surgical resection. It also raises important pathophysiologic issues concerning mechanisms of seizure generation. Until now, several seizure-onset patterns have been described using distinct recording methods (subdural, depth electrode), mostly in temporal lobe epilepsies or with heterogeneous neocortical lesions.

Methods

We analyzed data from a cohort of 53 consecutive patients explored by stereoelectroencephalography (SEEG) and with pathologically confirmed malformation of cortical development (MCD; including focal cortical dysplasia [FCD] and neurodevelopmental tumors [NDTs]).

Results

We identified six seizure-onset patterns using visual and time-frequency analysis: low-voltage fast activity (LVFA); preictal spiking followed by LVFA; burst of polyspikes followed by LVFA; slow wave/DC shift followed by LVFA; theta/alpha sharp waves; and rhythmic spikes/spike-waves. We found a high prevalence of patterns that included LVFA (83%), indicating nevertheless that LVFA is not a constant characteristic of seizure onset. An association between seizure-onset patterns and histologic types was found (p = 001). The more prevalent patterns were as follows: (1) in FCD type I LVFA (23.1%) and slow wave/baseline shift followed by LVFA (15.4%); (2) in FCD type II burst of polyspikes followed by LVFA (31%), LVFA (27.6%), and preictal spiking followed by LVFA (27.6%); (3) in NDT, LVFA (54.5%). We found that a seizure-onset pattern that included LVFA was associated with favorable postsurgical outcome, but the completeness of the EZ resection was the sole independent predictive variable.

Significance

Six different seizure-onset patterns can be described in FCD and NDT. Better postsurgical outcome is associated with patterns that incorporate LVFA.

0