Surgical targeting of lateralized 18F‐fluorodeoxyglucose positron emission tomography hypometabolism relates to long‐term epilepsy surgery outcomes

Abstract

Objective

Surgical resection of the seizure onset zone can be an effective treatment for patients with drug-resistant focal epilepsy. Clinical, electrophysiological, and imaging data are all gathered prior to surgery to localize the seizure onset zone. However, only ~62% of patients become seizure-free after surgery, highlighting the need for improved methods to prospectively predict seizure recurrence after resection. 18F-Fluorodeoxyglucose (FDG) positron emission tomography (PET) is routinely acquired to guide epilepsy surgery; however, these scans are often assessed qualitatively in the clinic. Here, we quantified the surgical targeting of lateralized FDG-PET hypometabolism and assessed its relationship to surgical outcomes.

Methods

We included 55 patients who underwent resective epilepsy surgery (46 with temporal lobe epilepsy). We calculated laterality of the patients’ presurgical FDG-PET scans and used pre- and postsurgical magnetic resonance imaging to delineate the surgically resected regions. Surgical targeting of FDG-PET laterality was computed using the discriminability between resected and spared regions statistic.

Results

We found that surgical targeting of FDG-PET laterality could distinguish temporal lobe epilepsy patients who achieve freedom from disabling seizures in the long term (3 years) from those who do not (area under the curve [AUC] = .83), outperforming the standard clinical assessment (AUC = .68). We additionally found that this method generalized to the nine patients with extratemporal lobe focal epilepsy.

Significance

This study highlights the benefit of quantifying FDG-PET to guide epilepsy surgery. The presented quantitative FDG-PET method could be used prospectively in the clinic to aid in surgical guidance and patient counseling.

0