Cost‐effectiveness analysis of responsive neurostimulation for drug‐resistant focal onset epilepsy

Abstract

Objective

We evaluated the incremental cost-effectiveness of responsive neurostimulation (RNS) therapy for management of medically refractory focal onset seizures compared to pharmacotherapy alone.

Methods

We created and analyzed a decision model for treatment with RNS therapy versus pharmacotherapy using a semi-Markov process. We adopted a public payer perspective and used the maximum duration of 9 years in the RNS long-term follow-up study as the time horizon. We used seizure frequency data to model changes in quality of life and estimated the impact of RNS therapy on the annual direct costs of epilepsy care. The model also included expected mortality, adverse events, and costs related to system implantation, programming, and replacement. We interpreted our results against societal willingness-to-pay thresholds of $50 000, $100 000, and $200 000 per quality-adjusted life year (QALY).

Results

Based on three different calculated utility value estimates, the incremental cost-effectiveness ratio (ICER) for RNS therapy (with continued pharmacotherapy) compared to pharmacotherapy alone ranged between $28 825 and $46 596. Multiple sensitivity analyses yielded ICERs often below $50 000 per QALY and consistently below $100 000/QALY.

Significance

Modeling based on 9 years of available data demonstrates that RNS therapy for medically refractory epilepsy very likely falls within the range of cost-effectiveness, depending on method of utility estimation, variability in model inputs, and willingness-to-pay threshold. Several factors favor improved cost-effectiveness in the future. Given the increasing focus on delivering cost-effective care, we hope that this analysis will help inform clinical decision-making for this surgical option for refractory epilepsy.

0