Summary
Objective
We report on temporally clustered seizures detected from continuous long-term ambulatory human electroencephalographic data. The objective was to investigate short-term seizure clustering, which we have termed bursting, and consider implications for patient care, seizure prediction, and evaluating therapies.
Methods
Chronic ambulatory intracranial electroencephalography (EEG) data collected for the purpose of seizure prediction were annotated to identify seizure events. A detection algorithm was used to identify bursts of events. Burst events were compared to nonburst events to evaluate event ...
ENE